Pure Descent for the Module of Zariski Differentials

نویسنده

  • ERICH PLATTE
چکیده

It will be shown that for any given pure extension A -» B of noetherian k -algebras, with k being a field of characteristic zero, and for any prime ideal b Q A the Zariski-Lipman conjecture for Av is solvable, if £ is a locally factorial domain for which the finite differential module is reflexive. We will also discuss an embedding property with respect to the module of Zariski differentials of A9. 1. Preliminaries. A homomorphism S is equivalent to saying that E -*• E <8>R S is injective, where E denotes the injective hull of the Ä-module R/mR, see (6.11) in [3]. Let x G E generate the one-dimensional socle of the Ä-module E and c := Anns(x ® 1) with mRS Q c G S. Then Sq is pure, too. Secondly, we will discuss a class of pure extensions in characteristic zero. Let R ®t K is faithfully flat, and the extended homomorphism R ®kK-+S is nondegenerate. Therefore we may even assume k = S/ms. Now, let r := dim S/mRS and *,, . . ., tr be elements of ms whose residue classes modulo mRS form a system of parameters in S/mRS. The extended homomorphism R' := R[TU ..., T¡¡-*S with <p'\R = <¡p and Received by the editors January 30, 1980 and, in revised form, March 24, 1980. 1980 Mathematics Subject Classification. Primary 13B02; Secondary 14B15. © 1981 American Mathematical Society 0002-9939/81/0000-0201/$02.50 7 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY SPECTRUM OF A MODULE

‎‎Let $R$ be a commutative ring with identity and let $M$ be an $R$-module‎. ‎We define the primary spectrum of $M$‎, ‎denoted by $mathcal{PS}(M)$‎, ‎to be the set of all primary submodules $Q$ of $M$ such that $(operatorname{rad}Q:M)=sqrt{(Q:M)}$‎. ‎In this paper‎, ‎we topologize $mathcal{PS}(M)$ with a topology having the Zariski topology on the prime spectrum $operatorname{Spec}(M)$ as a sub...

متن کامل

ZARISKI-LIKE SPACES OF CERTAIN MODULES

Let $R$ be a commutative ring with identity and $M$ be a unitary$R$-module. The primary-like spectrum $Spec_L(M)$ is thecollection of all primary-like submodules $Q$ such that $M/Q$ is aprimeful $R$-module. Here, $M$ is defined to be RSP if $rad(Q)$ isa prime submodule for all $Qin Spec_L(M)$. This class containsthe family of multiplication modules properly. The purpose of thispaper is to intro...

متن کامل

A scheme over quasi-prime spectrum of modules

The notions of quasi-prime submodules and developed  Zariski topology was introduced by the present authors in cite{ah10}. In this paper we use these notions to define a scheme. For an $R$-module $M$, let $X:={Qin qSpec(M) mid (Q:_R M)inSpec(R)}$. It is proved that $(X, mathcal{O}_X)$ is a locally ringed space. We study the morphism of locally ringed spaces induced by $R$-homomorphism $Mrightar...

متن کامل

On two problems concerning the Zariski topology of modules

Let $R$ be an associative ring and let $M$ be a left $R$-module.Let $Spec_{R}(M)$ be the collection of all prime submodules of $M$ (equipped with classical Zariski topology). There is a conjecture which says that every irreducible closed subset of $Spec_{R}(M)$ has a generic point. In this article we give an affirmative answer to this conjecture and show that if $M$ has a Noetherian spectrum, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010